Abstract

Molecular vibrations in ammonia (NH3) and hydrogen sulfide (H2S), and internal rotations in hydrogen peroxide (HOOH), hydrogen thioperoxide (HSOH), hydrogen persulfide (HSSH), and ethylene (C2H4) are studied using ab initio SCF methods at the Hartree−Fock level using a standard Pople 6-311G** basis set. Polarizability values are calculated using both Pople's and Sadlej's basis sets. Any nontotally symmetric distortion in bond length or bond angle along the vibrational symmetry coordinates of a molecule around its equilibrium geometry decreases the equilibrium hardness value and increases the equilibrium polarizability value. During rotational isomerization the minimum energy conformation corresponds to the maximum hardness and minimum polarizability values and the maximum energy conformation corresponds to the minimum hardness and maximum polarizability values. Density functional calculations confirm these observed trends. In general we have found that the conditions of maximum hardness and minimum polarizability complement the minimum energy criterion for molecular stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.