Abstract

We know a great deal about the cancer risk of high radiation doses from studies of Japanese A-bomb survivors, patients exposed for medical therapy, occupational exposures, etc. But the vast majority of important applications deal with much lower doses, usually accumulated at much lower dose rates, referred to as “low level radiation” (LLR). Conventionally, the cancer risk from LLR has been estimated by use of the linear no-threshold theory (LNT). For example, it is assumed that the cancer risk from 0.001 Sv (100 mrem) of dose is 0.001 times the risk from 1 Sv (100 rem). In recent years, the former risk estimates have often been reduced by a “dose and dose rate reduction factor”, which is taken to be a factor of two. But otherwise, the LNT is frequently used for doses as low as one hundred-thousandth of those for which there is direct evidence of cancer induction by radiation. It is the origin of the commonly used expression “no level of radiation is safe” and the consequent public fear of LLR. The importance of this use of the LNT is difficult to exaggerate. It is estimated that in the USA, US$85 billion will be spent in cleaning up the Hanford site to avoid LLR, and comparable sums will be spent on government operating sites at Savannah River, Rocky Flats, Fernald and several others. If the LNT is wrong and LLR is harmless, all of this money will be wasted. Some other areas where huge sums of money are devoted to avoiding LLR are:

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call