Abstract

In this paper, we study the validity of the assumption that speech source signals exhibit lower dependency and therefore better separability with Independent Component Analysis algorithms than music sources. In particular, we investigate some dependency measures in the temporal and the time-frequency domains, resp. in the framework of instantaneous and convolutive mixtures. Moreover, we test several ICA methods, based on the above dependency measures, on the same source signals. We experimentally show that speech and music sources tend to have the same mean behaviour for excerpt durations above 20 ms, but music signals provide more spread dependency measures and SIR values. Lastly, we experimentally show that Gaussian nonstationary mutual information is better suited to audio signals than mutual information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.