Abstract
Synchrotron Laue microdiffraction and Digital Image Correlation measurements were coupled to track the elastic strain field (or stress field) and the total strain field near a general grain boundary in a bent bicrystal. A 316L stainless steel bicrystal was deformed in situ into the elasto-plastic regime with a four-point bending setup. The test was then simulated using finite elements with a crystal plasticity model comprising internal variables (dislocation densities on discrete slip systems). The predictions of the model have been compared with both the total strain field and the elastic strain field obtained experimentally. While activated slip systems and total strains are reasonably well predicted, elastic strains appear overestimated next to the grain boundary. This suggests that conventional crystal plasticity models need improvement to correctly model stresses at grain boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.