Abstract

Background: Bioelectrical impedance analysis (BIA) is a simple and rapid technique to measure body composition (BC). Validity of BIA in patients with low body mass index (BMI) remains controversial. We assessed the validity of several BIA equations to evaluate fat-free mass (FFM), fat mass (FM) and muscle mass in patients with anorexia nervosa (AN) by using dual X ray absorptiometry (DXA) as reference. Methods: Sixteen BIA equations developed for FFM and appendicular lean mass (ALM) were applied on electrical data measured by BIA in AN patients with BMI <16 kg/m². BIA and DXA were done the same day after overnight fasting. Results were compared with the Bland–Altman method, Pearson correlation and a Lin concordance test. Results: Data from 115 female AN patients (14.6 ± 1.2 kg/m²; 32.3 ± 14.5 years) were included. FM and FFM assessed by DXA were, respectively, 4.2 ± 2.4 kg and 35.5 ± 3.8 kg. The best results were obtained with Sun’s equation: respectively for FM and FFM, Bland Altman bias at 0.548 and 0.706 kg, Pearson correlation r at 0.86 and 0.86 and Lin concordance coefficient at 0.81 and 0.84. However, confidence intervals (CI) at 95% were high (−2.73–3.83 kg for FM; −4.55–3.13 kg for FFM). Other equations also showed high 95% CI. Accuracy was acceptable for Sun and Bedogni equations for FFM (approximately 66%) but very low for FM prediction considering all equations (<15%). Concerning ALM evaluated at 14.88 ± 2.04 kg by DXA, only Scafoglieri and Yoshida equations showed acceptable values: bias (−0.2 and 2.8%), Pearson r (0.89 and 0.86), Lin concordance coefficient (0.82 and 0.82) and accuracy (83.5 and 82.6%). Confidence intervals at 95% were high for both equations (−2.1–2.0 for Scafoglieri equation and −1.6–2.4 for Yoshida equation). Conclusion: In AN patients with BMI < 16 kg/m², no BIA equation tested was adapted to evaluate BC at the individual level.

Highlights

  • Anorexia nervosa (AN) is an eating disorder defined by undernutrition, i.e., body mass index (BMI)

  • The reference method is dual-energy X-ray absorptiometry (DXA), which provides a rapid assessment of FM, FFM and bone mineral density [4], but dual X ray absorptiometry (DXA) is expensive and requires specialized radiology equipment and environment, it is hardly feasible in routine clinical practice

  • We aimed to evaluate the validity of Bioelectrical impedance analysis (BIA) equations developed either for FFM or for muscle mass in a large sample of severe patients with anorexia nervosa (AN) (BMI

Read more

Summary

Introduction

Anorexia nervosa (AN) is an eating disorder defined by undernutrition, i.e., body mass index (BMI)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call