Abstract

PurposeThe purpose of this study was to determine, i) the reliability of blood lactate and ventilatory-based thresholds, ii) the lactate threshold that corresponds with each ventilatory threshold (VT1 and VT2) and with maximal lactate steady state test (MLSS) as a proxy of cycling performance.MethodsFourteen aerobically-trained male cyclists ( 62.1±4.6 ml·kg-1·min-1) performed two graded exercise tests (50 W warm-up followed by 25 W·min-1) to exhaustion. Blood lactate, and data were collected at every stage. Workloads at VT1 (rise in ;) and VT2 (rise in ) were compared with workloads at lactate thresholds. Several continuous tests were needed to detect the MLSS workload. Agreement and differences among tests were assessed with ANOVA, ICC and Bland-Altman. Reliability of each test was evaluated using ICC, CV and Bland-Altman plots.ResultsWorkloads at lactate threshold (LT) and LT+2.0 mMol·L-1 matched the ones for VT1 and VT2, respectively (p = 0.147 and 0.539; r = 0.72 and 0.80; Bias = -13.6 and 2.8, respectively). Furthermore, workload at LT+0.5 mMol·L-1 coincided with MLSS workload (p = 0.449; r = 0.78; Bias = -4.5). Lactate threshold tests had high reliability (CV = 3.4–3.7%; r = 0.85–0.89; Bias = -2.1–3.0) except for DMAX method (CV = 10.3%; r = 0.57; Bias = 15.4). Ventilatory thresholds show high reliability (CV = 1.6%–3.5%; r = 0.90–0.96; Bias = -1.8–2.9) except for RER = 1 and V-Slope (CV = 5.0–6.4%; r = 0.79; Bias = -5.6–12.4).ConclusionsLactate threshold tests can be a valid and reliable alternative to ventilatory thresholds to identify the workloads at the transition from aerobic to anaerobic metabolism.

Highlights

  • Maximal oxygen consumption [1], heart rate deflection [2], ventilatory/lactate thresholds [3,4] and maximum lactate steady state (MLSS) [5] are physiological evaluations related to endurance performance

  • Workloads at lactate threshold (LT) and LT+2.0 mMolÁL-1 matched the ones for VT1 and VT2, respectively (p = 0.147 and 0.539; r = 0.72 and 0.80; Bias = -13.6 and 2.8, respectively)

  • Workload at LT+0.5 mMolÁL-1 coincided with MLSS workload (p = 0.449; r = 0.78; Bias = -4.5)

Read more

Summary

Introduction

Maximal oxygen consumption [1], heart rate deflection [2], ventilatory/lactate thresholds [3,4] and maximum lactate steady state (MLSS) [5] are physiological evaluations related to endurance performance. All these tests predict, to some degree, endurance performance its accuracy, reproducibility and affordability varies. While maximal oxygen consumption could account for 91% of variability in marathon running performance, the velocity at lactate threshold explained 98% of the performance variability [6]. Workload at ventilatory threshold seems the more precise predictor of cycling endurance performance, often times the preferential use of ventilatory or lactate thresholds depends on equipment availability and ease at data interpretation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call