Abstract
Horsley, BJ, Tofari, PJ, Halson, SL, Kemp, JG, Chalkley, D, Cole, MH, Johnston, RD, and Cormack, SJ. Validity and reliability of thoracic-mounted inertial measurement units to derive gait characteristics during running. J Strength Cond Res 38(2): 274-282, 2024-Inertial measurement units (IMUs) attached to the tibia or lumbar spine can be used to analyze running gait but, with team-sports, are often contained in global navigation satellite system (GNSS) units worn on the thoracic spine. We assessed the validity and reliability of thoracic-mounted IMUs to derive gait characteristics, including peak vertical ground reaction force (vGRF peak ) and vertical stiffness (K vert ). Sixteen recreationally active subjects performed 40 m run throughs at 3-4, 5-6, and 7-8 m·s -1 . Inertial measurement units were attached to the tibia, lumbar, and thoracic spine, whereas 2 GNSS units were also worn on the thoracic spine. Initial contact (IC) from a validated algorithm was evaluated with F1 score and agreement (mean difference ± SD ) of gait data with the tibia and lumbar spine using nonparametric limits of agreement (LoA). Test-retest error {coefficient of variation, CV (95% confidence interval [CI])} established reliability. Thoracic IMUs detected a nearly perfect proportion (F1 ≥ 0.95) of IC events compared with tibia and lumbar sites. Step length had the strongest agreement (0 ± 0.04 m) at 3-4 m·s -1 , whereas contact time improved from 3 to 4 (-0.028 ± 0.018 second) to 7-8 m·s -1 (-0.004 ± 0.013 second). All values for K vert fell within the LoA at 7-8 m·s -1 . Test-retest error was ≤12.8% for all gait characteristics obtained from GNSS units, where K vert was most reliable at 3-4 m·s -1 (6.8% [5.2, 9.6]) and vGRF peak at 7-8 m·s -1 (3.7% [2.5, 5.2]). The thoracic-spine site is suitable to derive gait characteristics, including K vert , from IMUs within GNSS units, eliminating the need for additional sensors to analyze running gait.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.