Abstract
This paper aims to validate the analytical three-dimensional wake models by the wind data measured at a complex-terrain hilly wind farm in China. The wake models take into account the variation of wind speed in the vertical direction. The profiles of wind speeds were scanned by two moveable lidars. Two scanning modes were adopted to obtain the profiles of wind speed in vertical and horizontal directions, respectively. When validating the wake model for a single wind turbine in the vertical direction, the model can predict the wind speeds with acceptable accuracy, especially at positions beyond 10D downstream distance or above 100 m height. Some large errors were found at positions less than 40 m height. Wind speeds in two symmetrical side sections showed different distributions at the same downwind positions. When validating the wake model for multiple wind turbines in horizontal direction, the model also had a reliable accuracy at the far wake positions and near the inflow measuring site, but it cannot predict the wind deficits before an operating wind turbine and was not accurate in some complex-terrain situations. Suggestions and factors were given to be considered for improving the wake models in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.