Abstract
In last years, atmospheric dispersion models have reached considerable popularity in environmental research field. In this regard, given the difficulties associated to the estimation of emission rate for some kind of sources, and due to the importance of this parameter for the reliability of the results, Backward dispersion models may represent promising tools. In particular, by knowing a measured downwind concentration in ambient air, they provide a numerical value for the emission rate. This paper discusses a critical validation of the WindTrax Backward model: the investigation does not only deal with the strict reliability of the model but also assesses under which conditions (i.e. stability class, number, and location of the sensors) the model shows the greatest accuracy. For this purpose, WindTrax results have been compared to observed values obtained from available experimental datasets. In addition, a sensitivity study regarding model-specific parameters required by WindTrax to replicate the physics and the random nature of atmospheric dispersion processes is discussed. This is a crucial point, since, for these settings, indications on the numerical values to be adopted are not available. From this study, it turns out that the investigated model specific settings do not lead to a significant output variation. Concerning the validation study, a general tendency of the model to predict the observed values with a good level of accuracy has been observed, especially under neutral atmospheric conditions. In addition, it seems that WindTrax underestimates the emission rate during unstable stratification and overestimates during stable conditions. Finally, by the definition of alternative scenarios, in which only a portion of the concentration sensors was considered, WindTrax performance appears better than acceptable even with a small number of concentration sensors, as long as the positioning is in the middle of the plume and not in the strict vicinity of the source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.