Abstract

BackgroundThere is a significant need for continuous noninvasive blood pressure (cNIBP) monitoring, especially for anesthetized surgery and ICU recovery. cNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes.The test system examined here is the CareTaker® and a pulse contour analysis algorithm, Pulse Decomposition Analysis (PDA). PDA’s premise is that the peripheral arterial pressure pulse is a superposition of five individual component pressure pulses that are due to the left ventricular ejection and reflections and re-reflections from only two reflection sites within the central arteries.The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures.MethodsCentral arterial blood pressures of patients (38 m/25 f, mean age: 62.7 y, SD: 11.5 y, mean height: 172.3 cm, SD: 9.7 cm, mean weight: 86.8 kg, SD: 20.1 kg) undergoing cardiac catheterization were monitored using central line catheters while the PDA parameters were extracted from the arterial pulse signal obtained non-invasively using CareTaker system.ResultsQualitative validation of the model was achieved with the direct observation of the five component pressure pulses in the central arteries using central line catheters. Statistically significant correlations between P2P1 and systole and T13 and pulse pressure were established (systole: R square: 0.92 (p < 0.0001), diastole: R square: 0.78 (p < 0.0001). Bland-Altman comparisons between blood pressures obtained through the conversion of PDA parameters to blood pressures of non-invasively obtained pulse signatures with catheter-obtained blood pressures fell within the trend guidelines of the Association for the Advancement of Medical Instrumentation SP-10 standard (standard deviation: 8 mmHg(systole: 5.87 mmHg, diastole: 5.69 mmHg)).ConclusionsThe results indicate that arterial blood pressure can be accurately measured and tracked noninvasively and continuously using the CareTaker system and the PDA algorithm. The results further support the physical model that all of the features of the pressure pulse envelope, whether in the central arteries or in the arterial periphery, can be explained by the interaction of the left ventricular ejection pressure pulse with two centrally located reflection sites.

Highlights

  • The universal introduction of non-invasive continuous blood pressure monitors into the clinical realm remains a largely unmet challenge

  • The results indicate that arterial blood pressure can be accurately measured and tracked noninvasively and continuously using the CareTaker system and the Pulse Decomposition Analysis (PDA) algorithm

  • While current continuous noninvasive blood pressure (cNIBP) technologies are commonly used in research settings, there has been little penetration in intensive care or operating room settings

Read more

Summary

Introduction

The universal introduction of non-invasive continuous blood pressure monitors into the clinical realm remains a largely unmet challenge. While current cNIBP technologies are commonly used in research settings, there has been little penetration in intensive care or operating room settings. One indication of this status is the continuing list of publications that are related to the clinical evaluation of potential cNIBP candidate technologies [1,2,3,4,5,6,7]. CNIBP systems could lower costs and expand the use of continuous blood pressure monitoring, lowering risk and improving outcomes. The hypothesis examined here is that the model’s principal parameters P2P1 and T13 can be correlated with, respectively, systolic and pulse pressures

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.