Abstract

PurposeThe Polar OH1 is an optical heart rate (HR) sensor which can be used on different parts of the body. The purpose of the study was to evaluate the validity of the OH1 as well as a wrist worn heart rate device (Polar M600) during swimming.MethodsTwenty-six well-trained competitive swimmers performed a regular training session including different swimming intensities. During the training the swimmers wore a H10 HR sensor with Polar Pro strap (H10) underneath the swim suit, a Polar OH1 optical HR sensor (OH1) underneath the swimming cap at the temple, and a sports watch with optical HR sensor, Polar M600 smart watch (M600) on the wrist.ResultsNo difference in HRmax, HRmean and HRmin between H10 and OH1 were evident. The HRmax and HRmean obtained by the M600 was significantly lower than the obtained by H10 and OH1 (p < 0.05). The ICC showed mostly excellent agreements between H10 and OH1 and poor to good agreements between H10 and M600. Bland-Altmann plot for M600 vs. H10 indicates upper and lower limits of agreement of -53.0 to 33.9 beats per minute. For OH1 vs. H10 the upper and lower limits of agreement were -26.9 to 24.7 beats per minute.ConclusionThe Polar OH1 optical HR sensor is a valid tool to monitor HR of different intensities during swimming whereas the Polar M600 smart watch as a wrist worn device is less accurate.

Highlights

  • The HRmax and HRmean obtained by the M600 was significantly lower than the obtained by H10 and OH1 (p < 0.05)

  • Swimming is a sport with a high overall training load throughout the year [1]

  • The purpose of the present study was to compare the validity of a PPG heart rate monitor obtaining HR during swimming on the temple (OH1) to HR measured by a chest-belt (H10) and a PPG device worn on the wrist (M600)

Read more

Summary

Introduction

Swimming is a sport with a high overall training load throughout the year [1]. Very few of these markers have strong scientific evidence and/or their usage is not reasonable from an ecological point of view. In this context heart rate (HR) is one of the most common parameters of assessing internal load in athletes easy and ecologically. The use of percentage of the individual maximal HR (HRmax) is used to monitor internal load during training of different sports [4] and to define different intensity zones during the training process [5]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call