Abstract

Spawning of grass carp, Ctenopharyngodon idella, in the Great Lakes basin was verified when eight fertilized eggs were collected in the Sandusky River, a tributary to Lake Erie, in 2015. Using a fluvial drift model (FluEgg) and simulation modeling, researchers predicted the fertilization location for those eggs was 3.8 ± 1 km (95% credible interval, CI) downstream of Ballville Dam. In June 2018, simultaneous collection of fertilized eggs and adults within the model-predicted spawning area provided the opportunity to verify the fertilization location. We used estimated developmental time (Dt) of eggs calculated from developmental stages, water temperature, and an equation that predicts Dt from cumulative thermal units experienced by developing eggs, in two analyses. First, we regressed Dt versus location of capture and solved that equation for developmental time of 0 hrs (Dt0) to estimate fertilization location. Second, we used Dt in the Fluvial Drift Simulator (FluEgg) to simulate 23 scenarios representative of drift conditions throughout the spawning event using the model-predicted spawning area and the site of Ballville Dam as potential spawning locations. Regression analysis placed the mean fertilization location 3.36 km (95% CI 2.27, 4.24) downstream of the site of Ballville Dam, within the model-predicted spawning area. Drift models demonstrated the model-predicted spawning area was best supported. Histograms of fertilization times overlapped with capture times by boat electrofishing of diploid adult grass carp in the model-predicted spawning area. This suite of analyses confirms the model-predicted spawning area and validates the methodology used to locate it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.