Abstract

Hyperthermia treatment planning can be supportive to ensure treatment quality, provided reliable prediction of the heating characteristics (i.e., focus size and effects of phase-amplitude and frequency steering) of the device concerned is possible. This study validates the predictions made by the treatment planning system Plan2Heat for various clinically used phased-array systems. The evaluated heating systems were AMC-2, AMC-4/ALBA-4D (Med-Logix srl, Rome, Italy), BSD Sigma-30, and Sigma-60 (Pyrexar Medical, Salt Lake City, UT, USA). Plan2Heat was used for specific absorption rate (SAR) simulations in phantoms representing measurement set-ups reported in the literature. SAR profiles from published measurement data based on E‑field or temperature rise were used to compare the device-specific heating characteristics predicted by Plan2Heat. Plan2Heat is able to predict the correct location and size of the SAR focus, as determined by phase-amplitude settings and operating frequency. Measured effects of phase-amplitude steering on focus shifts (i.e., local SAR minima or maxima) were also correctly reflected in treatment planning predictions. Deviations between measurements and simulations were typically < 10-20%, which is within the range of experimental uncertainty for such phased-array measurements. Plan2Heat is capable of adequately predicting the heating characteristics of the AMC‑2, AMC-4/ALBA-4D, BSD Sigma-30, and Sigma-60 phased-array systems routinely used in clinical hyperthermia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.