Abstract

SUMMARY The advantages of an automotive fully active suspension system have been promised for many years. Among them, simultaneously achieving good body and wheel mode damping is of the most fundamental. However, implementations of such concepts with hydraulic actuators have generally exhibit worse-than-passive harshness performance when such vehicles are driven through small irregularities on the road. Additional forces are transmitted through the hydraulic active suspension to the vehicle body at high frequencies. Conventional wisdom blames the non-ideal actuator in practice for the problem since most analytical papers assume it an ideal force-producing element. However, the mechanism of generating such excessive force as well as the methodology of solving it has not been systematically demonstrated in the literature. In this paper, a high fidelity mathematical quarter vehicle model is first developed and identified with vehicle test data. This model captures realistic dynamic behaviors of the hydraulic active suspension. The mechanism of creating such harshness problem is then explained with this model. To validate such mechanism, a frequency domain methodology that yields an equal-to-passive high frequency performance while maintaining a good active body behavior was developed based on this model and demonstrated with a test vehicle. The model predicts the test results almost exactly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.