Abstract

The fabric air dispersion system (FADS) is a ventilation terminal made of special polymer fabric. The porous structure of the fabric causes complex flow motion. Due to its advantages over the conventional ventilation system, i.e. ducts and diffusers, the FADS has been widely favoured by architects and researchers. In computational fluid dynamics (CFD) simulation the FADS is usually simplified into a free opening with an area equal to all pores and perforations, called the free area (FA) method in this present work. However, the effectiveness of this simplified method has not been validated. The present work took a half cylindrical FADS without orifices as an example and employed the FA method to simulate the airflow properties inside a chamber under isothermal and non-isothermal conditions. The simulated distributions of air velocity and temperature were compared with those by the direct description (DD) method. Meanwhile, the uniformity of air velocity distribution close to the FADS was validated against test data and the flow visualization using the dry ice as a smoking material. Results demonstrate that the FA method is effective and easy to implement, and performs as well as the DD method in predicting the distribution of airflow generated by the FADS without orifices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call