Abstract
We present and discuss the results of the validation of a forensic qualitative testing technique which consists in the detection of condensed traces of the gunshot residue (GSR) in the form of individual microparticles on the objects under study and their identification by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) using a scanning electron microscope Mira III (Tescan, Czech Republic) equipped with a system of X-ray microanalysis INCA GSR 450 (Oxford Nanoanalysis, Great Britain). The procedure for detecting GSR particles containing heavy metal compounds, systems of their classification and interpretation of test results are described. The suitability of the methodology for solving forensic problems has been confirmed. The validation procedure consists in assessing the reliability by comparing the test results obtained by experts (A and B) in two laboratories at different times using the same device, and in confirming the competence of experts proceeding from the results of blind tests. A standard sample ENFSI GSR PT 2018 A-03-07 is used. Each of the experts determined the number of particles classified as GSR present in control samples taken in a ballistic laboratory during a full-scale experiment: from the hands of the shooter; from the hands of a person who did not shoot; without microparticles (clean stage of an electron microscope). The reliability of the technique is characterized by the index (probability) of correct results of detecting GSR particles in the standard sample of at least 95.8% and by a small proportion of false results (no more than 5.4%). The competence of the experts is proved by the consistent results of «blind» testing of control full-scale samples, containing and not containing GSR particles obtained in different laboratories. The results of the validation indicate the suitability of the method for obtaining reliable and valid information about the presence of GSR particles on the objects under study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.