Abstract

The standing human body is frequently modeled as an inverted double pendulum restricted to a single plane. In order to capture the coordination efforts and interplay between spatial dimensions, the model has to capture motion and joint torques in all spatial dimensions. Our two-segment model covers two degrees of freedom (ML and AP revolutions) at the ankle and the hip level and utilizes the Denavit-Hartenberg convention. This work aimed to validate the model's torque estimation on a diverse group of participants (11 women, 22–56 years, 11 men, 22–61 years). The inverse dynamic calculations provide estimated joint torques for a motion capture recorded trial, while standing on a force platform enables the indirect measurement of ankle torques. A 60-second-long visually guided balancing task was recorded and repeated three times. The estimated and the indirectly measured torques were compared, and offset and variance type errors ( normalized RMSE and R2 ) were analyzed. The R2-values were excellent (R2 > 0.90) 64 out of the 66 cases (97%) for AP torques and 58 out of the 66 cases (88%) for ML torques. Normalized RMSE values were dominantly under the 0.35 value with some outliers. RMSE showed no evident connection with age, body height, body mass, or BMI. An open-chain kinematic model with two segments, following the Denavit-Hartenberg convention, is well suited to estimate the control torque traces of the human body during standing balancing and needs only three tracked positions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call