Abstract

Restricted tendon gliding is commonly observed in patients after finger flexor tendon (FFT) repair. The study described here was aimed at quantifying the amount of FFT gliding to evaluate the recovery of post-operative tendons using a 2-D radiofrequency (RF)-based ultrasound speckle tracking algorithm (UST). Ex vivo uniaxial tensile testing of porcine flexor tendons and in vivo isometric testing of human FFT were implemented to verify the efficacy of UST beforehand. The verified UST was then applied to the patients after FFT repair to compare tendon gliding between affected and healthy sides and to investigate its correlation with the joint range of motion (ROM). Excellent validity was confirmed with the average R2 value of 0.98, mean absolute error of 0.15 ± 0.08 mm and mean absolute percentage error of 5.19 ± 2.43% between results from UST and ex vivo testing. The test-retest reliability was verified with good agreement of ICC (0.90). The affected side exhibited less gliding (p=0.001) and smaller active ROM (p=0.002) than the healthy side. Meanwhile, a significant correlation between tendon gliding and passive ROM was found only on the healthy side (ρ=0.711, p=0.009). The present study provides a promising protocol to evaluate post-operative tendon recovery by quantifying the amount of FFT gliding with a validated UST. FFT gliding in patients with different levels of ROM restriction should be further explored for categorizing the severity of tendon adhesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call