Abstract

The computational fluid dynamics (CFD) code DESC has been used to simulate a series of dust explosion experiments performed in an 18.5 m3 vessel equipped with vent ducts of varying cross sections and lengths. The motivation behind the work is 3-fold: to validate the CFD code, to gain increased understanding of the parameters affecting dust explosion venting through ducts, and to investigate the validity of empirical correlations found in various standards and guidelines for design of explosion protection systems. Although the results from simulations agree reasonably well with experimental observations, DESC tends to underpredict the reduced explosion pressures for scenarios with vent ducts with diameters significantly larger than the vent openings. These discrepancies may be a result of inherent limitations in the model system, but poor repeatability and limited access to detailed experimental data complicates the analysis. Results from experiments and simulations are compared with predictions from vario...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.