Abstract

The ECETOC TRA model (presently version 3.1) is often used to estimate worker inhalation and dermal exposure in regulatory risk assessment. The dermal model in ECETOC TRA has not yet been validated by comparison with independent measured exposure levels. This was the goal of the present study. Measured exposure levels and relevant contextual information were gathered via literature search, websites of relevant occupational health institutes and direct requests for data to industry. Exposure data were clustered in so-called exposure cases, which are sets of data from one data source that are expected to have the same values for input parameters in the ECETOC TRA dermal exposure model. For each exposure case, the 75th percentile of measured values was calculated, because the model intends to estimate these values. The input values for the parameters in ECETOC TRA were assigned by an expert elicitation and consensus building process, based on descriptions of relevant contextual information.From more than 35 data sources, 106 useful exposure cases were derived, that were used for direct comparison with the model estimates. The exposure cases covered a large part of the ECETOC TRA dermal exposure model. The model explained 37% of the variance in the 75th percentiles of measured values. In around 80% of the exposure cases, the model estimate was higher than the 75th percentile of measured values. In the remaining exposure cases, the model estimate may not be sufficiently conservative.The model was shown to have a clear bias towards (severe) overestimation of dermal exposure at low measured exposure values, while all cases of apparent underestimation by the ECETOC TRA dermal exposure model occurred at high measured exposure values. This can be partly explained by a built-in bias in the effect of concentration of substance in product used, duration of exposure and the use of protective gloves in the model. The effect of protective gloves was calculated to be on average a factor of 34 in this data set, while factors of five to ten were used in the model estimations. There was also an effect of the sampling method in the measured data on the exposure levels. Exposure cases where sampling was done via an interception method, such as gloves, on average showed a factor of six higher 75th percentiles of measured values than exposure cases where sampling was done via a removal method, such as hand washing. This may partly be responsible for the apparent underestimation of dermal exposure by the model at high exposure values. However, there also appeared to be a relation between expected exposure level (as indicated by the model estimate) and the choice of sampling method.In this study, solid substances used in liquid products were treated as liquids with negligible volatility. The results indicate that the ECETOC TRA dermal exposure model performs equally well for these substances as for liquids. There were suggestions of a difference in performance of the model between solids and liquids.For several parts of the ECETOC TRA dermal model, no or hardly any measured dermal exposure data were available. Therefore, gathering of more dermal exposure levels is recommended, specifically for situations not yet sufficiently covered in the present data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.