Abstract

BACKGROUND: Development of numerical methods and technology of computer-aided engineering, used in vehicle design, has reached its high level. Results of virtual experiments cannot be totally relied upon without verifying results obtained with the developed mathematical model. That is why the present paper concentrates on the relevant issue of validation of the CAE models, applicable for vehicle suspension components dynamic load analysis.
 AIMS: Goal of the research is adequacy confirmation of developed requirements to preparation of simulation models, applicable for dynamic load and fatigue analysis, by means of numerical simulation with validation analysis.
 METHODS: CAE models validation is carried out with a comparative method of results obtained from either laboratory or proving ground testing and simulation of a physical object. Strain gauging results are taken for the comparison. The Models are prepaired with using MBS and FEM technologies.
 RESULTS: Validation showed of validation show a good convergence of modelling and experiment results, that confirm adequacy of developed requirements to creation of CAE models, applicable for load and fatigue analysis of vehicle suspension components. The selected convergence evaluation criteria have not been used in similar papers yet and have shown an effective outcome of quantitative and qualitative comparison of loading condition of suspension parts in a variety of boundary conditions of mechanical system simulation.
 CONCLUSIONS: Validated CAE models of a passenger car suspension, developed accelerated loading cycle, the model design and dynamic loading simulation approach can be used for chassis parts load analysis and fatigue prediction during early stages of development and as support of testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.