Abstract

The Shuttle Radar Topography Mission (SRTM) generated one of the most-complete high-resolution digital topographic data sets of the world to date. The elevations generated by the on-board C-band sensor represent surface elevations in “bare earth” regions, and the elevations of various scatterers such as leaves and branches in other regions. Elevations generated by a medium-footprint (� 10 m diameter) laser altimeter (lidar) system known as NASA’s Laser Vegetation Imaging Sensor (LVIS) were used to assess the accuracy of SRTM elevations at study sites of variable relief, and landcover. Five study sites in Maine, Massachusetts, Maryland, New Hampshire, and Costa Rica were chosen where coincident LVIS and SRTM data occur. Both ground and canopy top lidar elevations were compared to the SRTM elevations. In “bare earth” regions, the mean vertical offset between the SRTM elevations and LVIS ground elevations varied with study site and was approximately 0.0 m, 0.5 m, 3.0 m, 4.0 m, and 4.5 m at the Maine, Maryland, Massachusetts, New Hampshire, and Costa Rica study sites, respectively. In vegetated regions, the mean vertical offset increased, implying the phase center fell above the ground, and the offset varied by region. The SRTM elevations fell on average approximately 14 m below the LVIS canopy top elevations, except in Costa Rica where they were approximately 8 m below the canopy top. At all five study sites, SRTM elevations increased with increasing vertical extent (i.e., the difference between the LVIS canopy top and ground elevations and analogous to canopy height in vegetated regions). A linear relationship was found sufficient to describe the relationship between the SRTM-LVIS elevation difference and canopy vertical extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.