Abstract

Abstract In this paper, we present a numerical simulation of a round impacting jet using coupled Smoothed Particle Hydrodynamics (SPH) and Finite Element (FE) methods. Numerical results are compared with the results of another simulation carried out by the CEL (Coupled Eulerian-Lagrangian) method. A water jet with a spherical head was used at an initial speed of 570 m/s to impact a flat plate made of Polymethyl-Methacrylate (PMMA). To model the entire process, the SPH method was used to model the water jet and the FE method for the PMMA structure. The distribution of the pressure on the impact surface and the resulting deformation of the structure were discussed. A Numerical model was developed using ABAQUS/Explicit version 6.14. Results of the coupled SPH-FE simulation were further validated. It is demonstrated that the CEL method presents smoother curves compared to the SPH method. These comparisons serve not only to validate the numerical simulation but also to give guidance in formulating the SPH-FEM numerical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.