Abstract
A validation study of the Spatially Modulated Ultrasound Radiation Force (SMURF) method for shear modulus estimation is presented. SMURF estimates of uniform gelatin and Zerdine phantoms covering a modulus range of 2 to 18 kPa are compared with results obtained by unconfined mechanical compression and sonoelastography. The results show agreement within the measurement uncertainties over the range indicated for all three methods. Repeatability and variation on the order of 5% of the phantom modulus are found for observations made at a single point within the phantom. Averaging of modulus estimates from several adjacent scan lines further decreases the variation. By using multiple radiation force peaks to induce a shear wave of known wavelength and measure the frequency of the wave, SMURF obtains modulus estimates from tracking data acquired along a single A-line. This is significant, as speckle can bias the measured phase of the shear wave. SMURF is shown to be insensitive to a constant phase error in the shear wave measurement. This results in greatly reduced correlated noise in the modulus estimates, in contrast with methods which track at multiple locations and do not cancel phase errors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.