Abstract

In the event of a loss of integrity of the main coolant line, a large mass and energy release from the primary circuit to the containment is to be expected. The temporal evolution of such depressurization is mainly governed by the critical flow, whose correct prediction requires, in first place, a correct description of the different friction terms. Within this work, selected friction models of the CESAR module of the Accident Source Term Evaluation Code (ASTEC) V2.1 integral code are validated against data from the Moby Dick test facility. Simulations are launched using two different numerical schemes: on the one hand, the classical five equation (drift flux) approach, with one momentum conservation equation for an average fluid plus one algebraic equation on the drift between the gas and the liquid; on the other hand, the recently implemented six equation approach, where two differential equations are used to obtain the phase velocities. The main findings are listed hereafter: The use of five equations provides an adequate description of the pressure loss as long as the mass fluxes remain below 1.24 kg/cm2 s and the gas mass fractions below 5.93 × 10 − 4. Beyond those conditions, the hypotheses of the drift flux model are exceeded and the use of an additional momentum equation is required. The use of an additional momentum equation leads to a better agreement with the experimental data for a wider range of mass fluxes and gas mass fractions. However, the qualitative prediction for high gas mass fractions still shows some deviations due to the decrease of the regular friction term at the end of the test section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.