Abstract

Fuel cell hybrid trains are being commercialized to replace trains powered by combustion engine to reduce carbon dioxide emission without high investment cost in overhead catenaries. In this context, this paper presents a universal model-based strategy for the operation of fuel cell hybrid trains based on adaptive Pontryagin’s minimum principle (APMP). Different from all other work, the implementation of Pontryagin’s minimum principle (PMP) considers the relaxation process due to the resistance-capacitor branches in the batteries to provide a precise reference for the evaluation of the robustness and fuel economy of the APMP-based strategy. Furthermore, a formula to physically estimate the costate is inspired by the offline PMP results and derived by using the energy conservation principle. Moreover, the robustness of the strategy against fuel cell aging, battery aging, inaccurate fuel cell modeling, and deviations introduced through fitting experimental data is investigated through simulation. Compared to the offline results, a maximum 1.5% higher hydrogen consumption is observed by simulation under different aging and uncertain operating conditions. Finally, the effectiveness and the robustness of the strategy are validated through measurement on the test bench at the Center for Mobile Propulsion of the RWTH Aachen University. A maximum of 2.7% more hydrogen consumption is measured compared to the offline PMP results under various conditions of uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.