Abstract

Careful validation of reference genes used for the normalization of real-time RT-PCR data is required to obtain accurate results regarding gene expression. We evaluated the stability of seven commonly used reference genes in the cerebral cortex and hippocampus of rats 3 days following traumatic brain injury (TBI). HPRT, SDHA, and GUSB were found to be the most stable reference genes in the cerebral cortex, whereas B2MG, TBP, and GAPDH were the most stable in the hippocampus. The use of three reference genes was determined to be the optimal number for accurate normalization of data. To illustrate this point, when our gene of interest, substance P (SP), was normalized against the three most stable reference genes in both brain areas, we found no significant difference between injured and uninjured rats at the 3-day time point. However, when our SP data were normalized to each reference gene individually, SP mRNA level was highly variable depending on the reference gene chosen. The results of the present study highlight the importance of validating reference genes to be used for real-time RT-PCR analysis. The use of the most stable reference genes presented here will allow more accurate normalization of gene expression data in TBI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.