Abstract

BackgroundSoybean pathogens and pests reduce grain production worldwide. Biotic interaction cause extensive changes in plant gene expression profile and the data produced by functional genomics studies need validation, usually done by quantitative PCR. Nevertheless, this technique relies on accurate normalization which, in turn, depends upon the proper selection of stable reference genes for each experimental condition. To date, only a few studies were performed to validate reference genes in soybean subjected to biotic stress. Here, we report reference genes validation in soybean during root-knot nematode (Meloidogyne incognita) parasitism and velvetbean caterpillar (Anticarsia gemmatalis) attack.FindingsThe expression stability of nine classical reference genes (GmCYP2, GmELF1A, GmELF1B, GmACT11, GmTUB, GmTUA5, GmG6PD, GmUBC2 and GmUBC4) was evaluated using twenty-four experimental samples including different organs, developmental stages, roots infected with M. incognita and leaves attacked by A. gemmatalis. Two different algorithms (geNorm and NormFinder) were used to determine expression stability. GmCYP2 and GmUBC4 are the most stable in different organs. Considering the developmental stages, GmELF1A and GmELF1B genes are the most stable. For spatial and temporal gene expression studies, normalization may be performed using GmUBC4, GmUBC2, GmCYP2 and GmACT11 as reference genes. Our data indicate that both GmELF1A and GmTUA5 are the most stable reference genes for data normalization obtained from soybean roots infected with M. incognita, and GmCYP2 and GmELF1A are the most stable in soybean leaves infested with A. gemmatalis.ConclusionsFuture expression studies using nematode infection and caterpilar infestation in soybean plant may utilize the reference gene sets reported here.

Highlights

  • Soybean pathogens and pests reduce grain production worldwide

  • The commonly used reference genes in plant are related with basal cell metabolism, these being structural genes of the cytoskeleton, genes involved in protein folding, genes involved in protein degradation, in protein synthesis and glucose metabolism [15,16,17]

  • Samples were collected at three soybean developmental stages: Vegetative 4 (V4 - characterized by the presence of the third fully developed trifoliate leaf), Reproductive 2 (R2 - full flowering) and Reproductive 4 (R4 - fully developed pods)

Read more

Summary

Background

Soybean is a crop of enormous economic importance due to several nutritional and industrial applications. Anticarsia gemmatalis, known as the velvetbean caterpillar, attacks the leaves causing severe plant damage This caterpillar is native from tropical and subtropical areas of the western hemisphere and is commonly found in tropical America, being a major pest of soybean crops in Brazil, a major producer of the grain [5]. The commonly used reference genes in plant are related with basal cell metabolism (housekeeping genes), these being structural genes of the cytoskeleton (actin and tubulin), genes involved in protein folding (cyclophilin and metalloproteases), genes involved in protein degradation (ubiquitin), in protein synthesis (elongation factor) and glucose metabolism (glyceraldeide-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase) [15,16,17] All these genes are referred to as constitutive genes, several studies have demonstrated that levels of transcripts of these genes may vary considerably under different experimental conditions, tissues and life cycle [16]. The expression stability of nine reference genes was analyzed in various organs, at different developmental stages of soybean and during leaf infestation with velvetbean caterpillar A. gemmatalis and root infection with the root-knot nematode M. incognita

Methods
Conclusion
14. Pfaffl MW
19. Fernald SZRD
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call