Abstract

Kinetic profile predictions of ITER PFPO-1 plasmas require high accuracy in the central electron temperatures to be applied to the calculation of third harmonic electron cyclotron absorption. Correctly predicting the transition from L-mode to H-mode further requires precise estimates of the ion heat flux in the periphery of the plasma. Recent versions of the quasi-linear transport models TGLF and QuaLiKiz were tested against an extensive set of experimental results from ASDEX Upgrade (AUG) and JET-ILW, where the focus was put on AUG plasmas heated by ECRH. Spectra obtained from TGLF are compared to a set of linear gyrokinetic simulations performed with GKW. Electron and ion temperature profiles obtained with TGLF-SAT1geo show good agreement with the experimental profiles, but there is a slight tendency to underpredict central T e and T i at high ratios T e/T i. QuaLiKiz yields reasonable results for T e and T i profiles in plasmas where the ion temperature gradient mode is dominant, but predicts a significantly too weak transport in the presence of dominant trapped electron modes in conditions of strong central electron heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.