Abstract

ABSTRACT The aim of this study was conducted to validate the physicochemical properties of a total of 362 chemicals [305 skin sensitizers (212 in the previous study + 93 additional new chemicals), 57 non-skin sensitizers (38 in the previous study + 19 additional new chemicals)] for skin sensitization risk assessment using quantitative structure-activity relationship (QSAR)/quantitative structure-property relationship (QSPR) approaches. The average melting point (MP), surface tension (ST), and density (DS) of the 305 skin sensitizers and 57 non-sensitizers were used to determine the cutoff values distinguishing positive and negative sensitization, and correlation coefficients were employed to derive effective 3-fold concentration (EC3 (%)) values. QSAR models were also utilized to assess skin sensitization. The sensitivity, specificity, and accuracy were 80, 15, and 70%, respectively, for the Toxtree QSAR model; 88, 46, and 81%, respectively, for Vega; and 56, 61, and 56%, respectively, for Danish EPA QSAR. Surprisingly, the sensitivity, specificity, and accuracy were 60, 80, and 64%, respectively, when MP, ST, and DS (MP+ST+DS) were used in this study. Further, MP+ST+DS exhibited a sensitivity of 77%, specificity 57%, and accuracy 73% when the derived EC3 values were classified into local lymph node assay (LLNA) skin sensitizer and non-sensitizer categories. Thus, MP, ST, and DS may prove useful in predicting EC3 values as not only an alternative approach to animal testing but also for skin sensitization risk assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call