Abstract

BackgroundGait impairments are among the most common and impactful symptoms of Parkinson’s disease (PD). Recent technological advances aim to quantify these impairments using low-cost wearable systems for use in either supervised clinical consultations or long-term unsupervised monitoring of gait in ecological environments. However, very few of these wearable systems have been validated comparatively to a criterion of established validity.ObjectiveWe developed two movement analysis solutions (3D full-body kinematics based on inertial sensors, and a smartphone application) in which validity was assessed versus the optoelectronic criterion in a population of PD patients.MethodsNineteen subjects with PD (7 female) participated in the study (age: 62 ± 12.27 years; disease duration: 6.39 ± 3.70 years; HY: 2 ± 0.23). Each participant underwent a gait analysis whilst barefoot, at a self-selected speed, for a distance of 3 times 10 m in a straight line, assessed simultaneously with all three systems.ResultsOur results show excellent agreement between either solution and the optoelectronic criterion. Both systems differentiate between PD patients and healthy controls, and between PD patients in ON or OFF medication states (normal difference distributions pooled from published research in PD patients in ON and OFF states that included an age-matched healthy control group). Fair to high waveform similarity and mean absolute errors below the mean relative orientation accuracy of the equipment were found when comparing the angular kinematics between the full-body inertial sensor-based system and the optoelectronic criterion.ConclusionsWe conclude that the presented solutions produce accurate results and can capture clinically relevant parameters using commodity wearable sensors or a simple smartphone. This validation will hopefully enable the adoption of these systems for supervised and unsupervised gait analysis in clinical practice and clinical trials.

Highlights

  • Gait impairments are among the most common and impactful symptoms of Parkinson’s disease (PD)

  • Both systems differentiate between PD patients and healthy controls, and between PD patients in ON or OFF medication states

  • Fair to high waveform similarity and mean absolute errors below the mean relative orientation accuracy of the equipment were found when comparing the angular kinematics between the full-body inertial sensor-based system and the optoelectronic criterion

Read more

Summary

Introduction

Gait impairments are among the most common and impactful symptoms of Parkinson’s disease (PD). Alterations in full-body kinematics are seen since early stages of the disease and are characterized by reduced velocity, step length, arm swing and smoothness, increased inter-limb asymmetry, impairments in complex locomotor tasks (e.g., turning) and reduced range of motion at several joints (e.g., shoulder), leading in later stages to an increase in double-support time and cadence, shuffling steps, freezing of gait and festination [3]. Motor symptoms of PD are commonly rated using the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), which has guided therapeutic decisions for several decades [1]. This approach is subjective and time-consuming, limited in assessment repetition and lacking in quantitative outcomes [6]. Fullbody kinematic analysis systems are needed to obtain a full and objective assessment of movement as a basis for individually tailored clinical decision making and prognostication

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call