Abstract

Healthy patellofemoral (PF) joint mechanics are critical to optimal function of the knee joint. Patellar maltracking may lead to large joint reaction loads and high stresses on the articular cartilage, increasing the risk of cartilage wear and the onset of osteoarthritis. While the mechanical sources of PF joint dysfunction are not well understood, links have been established between PF tracking and abnormal kinematics of the tibiofemoral (TF) joint, specifically following cruciate ligament injury and repair. The objective of this study was to create a validated finite element (FE) representation of the PF joint in order to predict PF kinematics and quadriceps force across healthy and pathological specimens. Measurements from a series of dynamic in-vitro cadaveric experiments were used to develop finite element models of the knee for three specimens. Specimens were loaded under intact, ACL-resected and both ACL and PCL-resected conditions. Finite element models of each specimen were constructed and calibrated to the outputs of the intact knee condition, and subsequently used to predict PF kinematics, contact mechanics, quadriceps force, patellar tendon moment arm and patellar tendon angle of the cruciate resected conditions. Model results for the intact and cruciate resected trials successfully matched experimental kinematics (avg. RMSE 4.0°, 3.1mm) and peak quadriceps forces (avg. difference 5.6%). Cruciate resections demonstrated either increased patellar tendon loads or increased joint reaction forces. The current study advances the standard for evaluation of PF mechanics through direct validation of cruciate-resected conditions including specimen-specific representations of PF anatomy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.