Abstract
This study aims to analyze the Chan-Vese model's performance using a variety of tumor images. The processes involve the tumors' segmentation, detecting the tumors, identifying the segmented tumor region, and extracting the features before classification occurs. In the findings, the Chan-Vese model performed well with brain and breast tumor segmentation. The model on the skin performed poorly. The brain recorded DSC 0.6949903, Jaccard 0.532558; the time elapsed 7.389940 with an iteration of 100. The breast recorded a DSC of 0.554107, Jaccard 0.383228; the time elapsed 9.577161 with an iteration of 100. According to this study, a higher DSC does not signify a well-segmented image, as the breast had a lower DSC than the skin. The skin recorded a DSC of 0.620420, Jaccard 0.449717; the time elapsed 17.566681 with an iteration of 200.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of E-Health and Medical Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.