Abstract

OMI HCHO is validated over the continental US (CONUS), and used to analyze regional sources in Northeast Asia (NA) and Southeast Asia (SA). OMI HCHO Version 2.0 data show unrealistic trends, which prompted the production of a corrected OMI HCHO data set. EOF and SVD are utilized to compare the spatial and temporal variability between OMI HCHO against GOME and SCIAMACHY, and against GEOS-Chem. CONUS HCHO chemistry is well studied; its concentrations are greatest in the southeastern US with annual cycle maximums corresponding to the summer vegetation. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. In NA the annual cycle is super-posed by extremely large concentrations in polluted mega-cities. The other sensors generally agree with NA’s OMI HCHO regional distribution, but megacity signal is not seen in GEOS-Chem. Our study supports the findings proposed by others that the emission inventory used in GEOS-Chem significantly underestimates anthropogenic influence on HCHO emission over megacities. The persistent mega-city signal is also present in SA. In SA the spatial and temporal patterns of OMI HCHO show a maximum in the dry season. The patterns are in remarkably good agreement with fire counts, which illustrates that the variability of HCHO over SA is strongly influenced by biomass burning. The corrected OMI HCHO data has realistic trends, conforms to well-known sources over CONUS, and has shown a stationary large concentration over polluted Asian mega-cities, and a widespread biomass burning in SA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.