Abstract

Existing bifacial photovoltaic (PV) performance models fall primarily into two categories: (1) ray tracing models that capture complex shading but lack the computational efficiency required for optimization applications; and (2) view factor (VF) models that efficiently simulate energy transfer but rely on user-defined losses which neglect temporal variation in phenomena such as shading and electrical mismatch. Hybrid VF / ray tracing models selectively employ ray tracing while balancing computational efficiency. This paper describes the validation of a novel hybrid model, DUET, which combines a 3D VF model with deterministic ray-object intersections. The software provides 2D irradiance profiles and mismatch-inclusive current-voltage curves for each scale of components: from cells to the full array. Validation against open-access data from Denmark shows that DUET predicts bifacial energy yield at 0.76% and 0.65% lower than measured yield for fixed-tilt and horizontal single-axis tracked (HSAT) rows, respectively, over 3370 and 2731 daylight hours. Monthly relative error in bifacial energy ranges from < 1% to ~4.5% for both systems. The mean absolute error (MAE) in hourly bifacial power is 18.1 mW/Wp for fixed-tilt and 18.4 mW/Wp for HSAT. These errors fall below the lowest previously reported MAE for six software at the same field site by ~0.77 mW/Wp for fixed-tilt and ~1.1 mW/Wp for HSAT. Modelled average rear insolation agrees with pyranometer data within +4.4% for fixed-tilt and -0.76% for HSAT. For both configurations, rear irradiance MAE aligns with the lowest error previously reported for other software at the site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.