Abstract

The high solid angular coverage of the general materials (GEM) diffractometer at the ISIS pulsed neutron source located at the UK Rutherford Appleton Laboratory offers the capability of obtaining quantitative bulk crystallographic texture data in a ‘single shot’ within a matter of minutes. This enables the possibility of in situ texture measurements to be made as a function of temperature to monitor and quantify texture changes during phase transformation or microstructure restoration processes like recrystallization. The purpose of this paper is to determine the quality of the texture data produced from GEM in order to define a level of confidence for subsequent texture model validation. This has been achieved by comparing textures of sections of a 200 mm diameter titanium alloy billet using data obtained from GEM with data obtained using electron backscattered diffraction (EBSD). In both cases, the data were obtained at room temperature. EBSD, unlike time-of-flight neutron diffraction analysis, obtains texture data directly from orientation measurements via backscattered Kikuchi patterns in the scanning electron microscope. In all analysed locations, both methods show near-identical textures, with regard to both the general orientation distributions and the levels of intensity of the distributions. This shows that the GEM diffractometer is capable of accurately determining bulk textures in a single shot, thus confirming its suitability for in situ high temperature experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call