Abstract

Background: Impairment of pulmonary aeration is a frequent postoperative complication that is associated with adverse outcome. Diagnosis and quantification of impaired pulmonary aeration by CT scan is limited due to concern for exposure to ionizing radiation. Magnetic resonance imaging (MRI) represents a potential radiation-free alternative for this use. We undertook an experimental study to validate the use of MRI to quantify pulmonary aeration impairment.Methods: Ten large white pigs were studied before intubation, after intubation, 2 h after non-protective mechanical ventilation and after intra-tracheal negative pressure suction to induce atelectasis. A lung CT scan immediately followed by a lung MRI were performed at all four time points. On the 40 CT images lung volumes corresponding to non-aerated, poorly aerated, normally aerated, and overinflated voxels were measured based on their radiodensity. Similarly, on the 40 MRI images lung volumes corresponding to non-aerated and aerated voxels were measured based on their signal intensity. The correlation between non-aerated lung by MRI vs., CT scans, and with PaO2/FiO2 measured at each of the four time points was assessed with the Pearson’ correlation coefficient, bias and limits of agreement.Results: Pearson correlation coefficient, bias and limits of agreements between the CT non-aerated lung volumes and MRI abnormal lung volumes were 0.88, -16 ml, and (-108, 77), respectively. Pearson correlation coefficient between PaO2/FiO2 and abnormal lung volumes measured with MRI was -0.60.Conclusion: In a preclinical swine model, quantitative measurements of pulmonary atelectasis by MRI-imaging are well correlated with the gold standard, i.e., densitometric scan CT measurements.

Highlights

  • Pulmonary dysfunction is a common and potentially lifethreatening complication after surgery (Nunn and Payne, 1962; Bendixen et al, 1963)

  • Pearson correlation coefficient between PaO2/FiO2 and abnormal lung volumes measured with Magnetic resonance imaging (MRI) was −0.60

  • In a preclinical swine model, quantitative measurements of pulmonary atelectasis by MRI-imaging are well correlated with the gold standard, i.e., densitometric scan CT measurements

Read more

Summary

Introduction

Pulmonary dysfunction is a common and potentially lifethreatening complication after surgery (Nunn and Payne, 1962; Bendixen et al, 1963). The significant radiation exposure associated with CT represents a limiting factor for its use in the perioperative setting. Magnetic resonance imaging (MRI), a radiationfree technique, is potential alternative to CT for atelectasis measurement (Ball et al, 2018; Kuethe et al, 2018). It has never been validated for the volumetric quantification of pulmonary aeration impairment (Duggan and Kavanagh, 2005). Diagnosis and quantification of impaired pulmonary aeration by CT scan is limited due to concern for exposure to ionizing radiation. Magnetic resonance imaging (MRI) represents a potential radiationfree alternative for this use. We undertook an experimental study to validate the use of MRI to quantify pulmonary aeration impairment

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call