Abstract

The aim of this study was to validate quantitative performance of a newly released simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) scanner, by using MR-based attenuation correction (MRAC), both in phantom study and in patient study. PET/MRI image uniformities of a phantom under different hardware configurations were tested and compared. Thirty patients were examined with 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) PET/computed tomography (CT) and subsequent PET/MRI. PET images from PET/MRI were corrected with MRAC (PETMR), CT-based attenuation maps (μ-maps, PETCT), and segmented CT μ-maps (PETCTSeg) derived from PET/CT. Standardized uptake values (SUVs) were compared among the 3 sets of PET in main organs (bone, liver and lung) and in 52 FDG-avid lesions, including soft-tissue lesions and bone lesions. The result showed that PET imaging uniformities of PET/MRI under different configurations were good (<8.8%). The SUV differences among the 3 sets of PET varied with organs and lesion types. In detail, the mean relative differences of SUV between PETMR and PETCT were as follows: −18.8%, bone (SUVmean); −8.0%, liver (SUVmean); −12.2%, lung (SUVmean); −18.1%, bone lesions (SUVmean); −13.3%, bone lesions (SUVmax); −8.2%, soft-tissue lesions (SUVmean); and −7.3%, soft-tissue lesions (SUVmax). The mean relative differences between PETMR and PETCTSeg were as follows: −19.0%, bone (SUVmean); −3.5%, liver (SUVmean); −3.3%, lung (SUVmean); −19.3%, bone lesions (SUVmean); −17.5%, bone lesions (SUVmax); −5.5%, soft-tissue lesions (SUVmean); and −4.4%, soft-tissue lesions (SUVmax). The differences of SUV between PETMR and PETCT were larger than those between PETMR and PETCTSeg, in both soft tissue and soft-tissue lesions (P < 0.001), but not in bone or bone lesions. In conclusion, MRAC in the newly released PET/MR system is accurate in most tissues, with SUV deviations being generally less than 10%, compared to PET/CT. In bone, however, underestimations can be substantial, which may be partially attributed to segmentation of the MR-based μ-maps.

Highlights

  • Academic Editor: Jiun-Jie Wang e aim of this study was to validate quantitative performance of a newly released simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) scanner, by using MR-based attenuation correction (MRAC), both in phantom study and in patient study

  • PET images from PET/MRI were corrected with MRAC (PETMR), computed tomography (CT)-based attenuation maps (μ-maps, PETCT), and segmented CT μ-maps (PETCTSeg) derived from PET/CT

  • There have been three commercial PET/MRI systems introduced; the first system was launched by Siemens in 2010 featuring an integrated design for simultaneous acquisition, the second system was released by Philips (Ingenuity TF PET/MR) in 2011 using a rotating table for sequential acquisitions, and most recently, a second simultaneous PET/MR system was introduced by GE (SIGNA PET/MR) in 2016 [1,2,3]

Read more

Summary

Materials and Methods

A uniform cylinder phantom (20 cm in diameter) filled with 1 mCi 68Ge was imaged at the center of a whole-body simultaneous PET/MR system (uPMR 790, United Imaging Healthcare, Shanghai, China). E attenuation maps for rigid objects were obtained from CT scans. It is crucial for determining the relative position between these objects and the imaging FOV. E position of the track was fixed, so its attenuation map was hardcoded into reconstruction. E position of the phantom was determined with an automatic coregistration process between the build-in model and the non-attenuation-corrected PET image. E whole image uniformity is defined as the maximum of the slice uniformities from the five slices

Patient Study
PET Attenuation Correction
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call