Abstract
This study presents a method for computing likelihood ratios (LRs) from multimodal score distributions, as the ones produced by some commercial off-the-shelf automated fingerprint identification systems (AFISs). The AFIS algorithms used to compare fingermarks and fingerprints were primarily developed for forensic investigation rather than for forensic evaluation purposes. Thus, in some of those algorithms, the computation of discriminating scores is speed-optimised. In the case of the AFIS algorithm used in this work, the speed-optimisation is achieved by performing the comparison in three different stages, each of which outputs scores of different magnitudes. As a consequence, all scores together present a multimodal distribution, even though each fingermark-to-fingerprint comparison generates one single score. This multimodal distribution of scores might be typical for other biometric systems or other algorithms, and the method proposed in this work can be also applied to those cases. As a result, the authors propose a probabilistic model for LR computation that presents more robustness to overfitting and data sparsity than other traditional approaches, like the use of models based on kernel density functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.