Abstract
Control delay for left-turning vehicles at unsignalized intersections was observed in the field and compared with average control delay calculated from the methodologies presented in the 1997 update of the Highway Capacity Manual (HCM). Unsignalized intersections with two-way left-turn lanes on the major street were observed in the peak and offpeak hours, and control delays were recorded for the one-stage and twostage left-turn processes. Next, the methodologies presented in the HCM were used to calculate the control delay for both processes and compared with the observed data. These comparisons were used as the basis for validation of the HCM methodologies regarding left-turn control delay at unsignalized intersections. From the comparisons, the calculated delay closely corresponds with the observed data, with a total approach volume at the intersection of approximately 2,500 vehicles per hour or less. Once the total approach volume increases above this level, the calculated values rapidly increase and the actual observed control delays gradually increase at a much lower rate. As a result, the observed and calculated delays are different when the intersection handles more than 2,500 approach vehicles in an hour. Statistical analyses were performed on the data to determine if the average observed control delay was related to the calculated control delay. Statistically, the observed control delay and the calculated control delay at the 95 percent confidence level show that the two data sets yield similar results for off-peak conditions. However, during the peak hour, when the total approach volumes are higher, the 95 percent confidence interval yields different results. Hence, the HCM procedures produce, on average, greater control delay estimates than the field observations when the total approach volumes are high.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.