Abstract

Temporary International Collective (TIC) was established in 1972 by an agreement among seven countries, namely, Bulgaria, Czechoslovakia, Germany, Hungary, Poland, Romania and Union of Soviet Socialist Republics. The main objective of TIC was to provide the experimental data for the reactor physics analysis of water cooled and water moderated power reactors (WWER). Extensive experimental work for different core configurations was carried out by TIC countries to investigate the physics behaviour of WWER lattices and the results were published in TIC volumes. Two VVER-1000 MWe reactors are currently in an advanced stage of construction and due for commissioning in Kudankulam, Tamil Nadu, India. Indigenous development of in-core fuel management computer codes for the analysis of hexagonal lattice cores is also in an advanced stage to address various design, operation and safety issues of VVER type cores. The validation of the above TIC lattice experiments will help in the identification of deficiencies in reactor physics design computational codes and the associated nuclear data libraries. In this paper, TIC experiments on uniform and regularly perturbed lattices have been analyzed as part of the validation of indigenous computer codes, EXCEL, TRIHEX-FA and HEXPIN developed at Light Water Reactors Physics Section, B.A.R.C. Neutron-nuclear multi-group cross-section libraries in WIMS/D format in 69/172 energy groups have been released by IAEA at the conclusion of WIMS library update project (WLUP). In the present study we have used libraries based on ENDF/B-6, ENDF/B-7, JEFF3.1 and JENDL3.2 evaluated nuclear datasets. The results of the theoretical analyses bring out the performance of the code system and various cross-section libraries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.