Abstract

The accuracy of point-particle models with two-way coupling for particles of Kolmogorov-length-scale size is assessed. Turbulent kinetic energy budgets are analyzed in physical and in spectral space. It is shown that the force projection of the two-way coupling consistently models the direct transfer of kinetic energy on the particle surfaces and the enhanced viscous dissipation in the vicinity of the particles. Direct and large-eddy simulations of particle-laden flows in isotropic decaying turbulence are conducted and compared with direct-particle fluid simulations, where the particle-fluid interaction is fully resolved. An analysis in spectral space shows that turbulence modulation by particles mainly occurs at larger scales, although the momentum transfer takes place at the smallest scales. Therefore, the turbulent kinetic energy cascade of the single phase dominates in particle-laden flows. It is shown that point-particle models do not interfere with subgrid scale models, which usually act on the smallest scale. Consequently, point-particle models predict sufficiently accurate the turbulence modulation in direct numerical simulations and even when a subgrid scale model is used. The resolution of the LES does not affect the accuracy of the point-particle model, when the subgrid kinetic energy is negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call