Abstract

BackgroundReference genes are used as internal standards to normalize mRNA abundance in quantitative real-time PCR and thereby allow a direct comparison between samples. So far most of these expression studies used human or classical laboratory model species whereas studies on non-model organism under in-situ conditions are quite rare. However, only studies in free-ranging populations can reveal the effects of natural selection on the expression levels of functional important genes. In order to test the feasibility of gene expression studies in wildlife samples we transferred and validated potential reference genes that were developed for lab mice (Mus musculus) to samples of wild yellow-necked mice, Apodemus flavicollis. The stability and suitability of eight potential reference genes was accessed by the programs BestKeeper, NormFinder and geNorm.FindingsAlthough the three programs used different algorithms the ranking order of reference genes was significantly concordant and geNorm differed in only one, NormFinder in two positions compared to BestKeeper. The genes ordered by their mean rank from the most to the least stable gene were: Rps18, Sdha, Canx, Actg1, Pgk1, Ubc, Rpl13a and Actb. Analyses of the normalization factor revealed best results when the five most stable genes were included for normalization.DiscussionWe established a SYBR green qPCR assay for liver samples of wild A. flavicollis and conclude that five genes should be used for appropriate normalization. Our study provides the basis to investigate differential expression of genes under selection under natural selection conditions in liver samples of A. flavicollis. This approach might also be applicable to other non-model organisms.

Highlights

  • Reference genes are used as internal standards to normalize mRNA abundance in quantitative real-time PCR and thereby allow a direct comparison between samples

  • We established a SYBR green Quantitative real-time RT PCR (qPCR) assay for liver samples of wild A. flavicollis and conclude that five genes should be used for appropriate normalization

  • Our study provides the basis to investigate differential expression of genes under selection under natural selection conditions in liver samples of A. flavicollis

Read more

Summary

Introduction

Reference genes are used as internal standards to normalize mRNA abundance in quantitative real-time PCR and thereby allow a direct comparison between samples. The most common practice in qPCR is the relative measurement of the expression of a gene of interest after normalization to an internal reference gene. These formerly called house-keeping genes were thought to be constantly expressed in every cell or every tissue and were supposed to be neither up nor down regulated. This assumption has proven false by a growing number of studies [2,3,4]. All genes seem to be regulated under some conditions and there seems to be no universal (page number not for citation purposes)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call