Abstract

We present an interpretation of the intermolecular transfer integral that is independent from the origin of the energy scale allowing convergence studies of this important parameter of organic molecular materials. We present extensive numerical studies by using an ethylene pi dimer to investigate the dependence of transfer integrals on the level of theory and intermolecular packing. Transfer integrals obtained from semiempirical calculations differ substantially from one another and from ab initio results. The ab initio results are consistent across all the levels used including Hartree-Fock, outer valence Green's function, and various forms of density functional theory (DFT). Validation of transfer integrals and bandwidths is performed by comparing the calculated values with the experimental values of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ), bis[1,2,5]thiadiazolo-p-quinobis(1,3-dithiole), (BTQBT) K-TCNQ, and hexagonal graphite. DFT in one of its presently popular forms, such as Perdew-Wang functionals (PW91), in combination with sufficient basis sets provides reliable transfer integrals, and therefore can serve as a basis for energy band calculations for soft organic materials with van der Waals gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.