Abstract

Neurologists judge the severity of Parkinsonian motor symptoms according to clinical scales, and their judgments exist inconsistent because of differences in clinical experience. Correspondingly, inertial sensing-based wearable devices (ISWDs) produce objective and standardized quantifications. However, ISWDs indirectly quantify symptoms by parametric modeling of angular velocities and linear accelerations nd trained by the judgments of several neurologists through supervised learning algorithms. Hence, the ISWD outputs are biased along with the scores provided by neurologists. To investigate the effectiveness ISWDs for Parkinsonian symptoms quantification, technical verification and clinical validation of both tremor and bradykinesia quantification methods were carried out. A total of 45 Parkinson's disease patients and 30 healthy controls performed the tremor and finger-tapping tasks, which were tracked simultaneously by an ISWD and a 6-axis high-precision electromagnetic tracking system (EMTS). The Unified Parkinson's Disease Rating Scale (UPDRS) prescribed parameters obtained from the EMTS, which directly provides linear and rotational displacements, were compared with the scores provided by both the ISWD and seven neurologists. EMTS-based parameters were regarded as the ground truth and were employed to train several common machine learning (ML) algorithms, i.e., support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF) algorithms. Inconsistency among the scores provided by the neurologists was proven. Besides, the quantification performance (sensitivity, specificity, and accuracy) of the ISWD employed with ML algorithms were better than that of the neurologists. Furthermore, EMTS can be utilized to both modify the quantification algorithms of ISWDs and improve the assessment skills of young neurologists.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.