Abstract
BackgroundPatient reported outcome measurement (PROMs) will not capture in detail the functional joint motion before and after total hip arthroplasty (THA). Therefore, methods more specifically aimed to analyse joint movements may be of interest. An analysis method that addresses these issues should be readily accessible and easy to use especially if applied to large groups of patients, who you want to study both before and after a surgical intervention such as THA. Our aim was to evaluate the accuracy of inertial measurement units (IMU) by comparison with an optical tracking system (OTS) to record pelvic tilt, hip and knee flexion in patients who had undergone THA.Methods49 subjects, 25 males 24 females, mean age of 73 years (range 51–80) with THA participated. All patients were measured with a portable IMU system, with sensors attached lateral to the pelvis, the thigh and the lower leg. For validation, a 12-camera motion capture system was used to determine the positions of 15 skin markers (Oqus 4, Qualisys AB, Sweden). Comparison of sagittal pelvic rotations, and hip and knee flexion-extension motions measured with the two systems was performed. The mean values of the IMU’s on the left and right sides were compared with OTS data.ResultsThe comparison between the two gait analysis methods showed no significant difference for mean pelvic tilt range (4.9–5.4 degrees) or mean knee flexion range (54.4–55.1 degrees) on either side (p > 0.7). The IMU system did however record slightly less hip flexion on both sides (36.7–37.7 degrees for the OTS compared to 34.0–34.4 degrees for the IMU, p < 0.001).ConclusionsWe found that inertial measurement units can produce valid kinematic data of pelvis- and knee flexion-extension range. Slightly less hip flexion was however recorded with the inertial measurement units which may be due to the difference in the modelling of the pelvis, soft tissue artefacts, and malalignment between the two methods or misplacement of the inertial measurement units.Trial registrationThe study has ethical approval from the ethical committee “Regionala etikprövningsnämnden i Göteborg” (Dnr: 611–15, 2015-08-27) and all study participants have submitted written approval for participation in the study.
Highlights
Patient reported outcome measurement (PROMs) will not capture in detail the functional joint motion before and after total hip arthroplasty (THA)
We compared a gait analysis system based on 6 inertial measurement units (IMU) sensors aligned to the lateral side of the pelvis and the lower leg with an optical tracking system (OTS) to evaluate the concordance between these methods when measuring pelvic, hip- and knee joint motions in the sagittal plane
We hypothesised that the IMU and OTS systems will record comparable values for the range of sagittal plane kinematics in the chosen joints
Summary
Patient reported outcome measurement (PROMs) will not capture in detail the functional joint motion before and after total hip arthroplasty (THA). According to the Swedish Hip Arthroplasty Register (SHAR) most of the patients (89%) report that they are satisfied with the result one year after their hip operation. Recordings of joint movements before and after THA could be of value to estimate the potential efficacy of the procedure and to document any remaining restrictions of motions with potential impact on the clinical outcome in a large group of patient with osteoarthritis. Hip range defines the stride length of the patient, which is a parameter used when assessing mobility
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.