Abstract

The use of inductively coupled plasma atomic emission spectrometry (ICP-AES) for the simultaneous determination of Al, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Se, Sr and Zn in human serum in a clinical laboratory was validated. Samples were digested and then analysed using yttrium as an internal standard and a serum-matched calibration standard. The criteria used to assess the analytical performance of the ICP-AES were detection and quantification limits, linearity, sensitivity, recovery, interference from alkali and acid, trueness and precision. Detection limits were 0.002-0.003 micromol/L for Mn, Sr, Ba, and Cd; 0.014-0.07 micromol/L for Co, Zn, Fe, Be, Li, Pb, Cu, Ni, and Cr; and 0.2-0.9 micromol/L for B, Se, and Al. Trueness, as controlled by analysis of bovine serum certified reference material, was acceptable for Co, Cu, Se and Zn, while Fe was 5.1% and Mn 6.2% below the lowest limit of the certified material interval. We conclude that ICP-AES can be used for multi-element analysis of B, Ba, Cu, Fe, Li, Se, Sr and Zn in serum. Serum levels of Al, Be and Co were below the detection limits while serum levels of Cd, Cr, Ni and Pb were below the quantification limits of the ICP-AES. These trace metals cannot be analysed as routine by the ICP-AES. However, in cases of intoxication with elevated serum concentrations mean recovery of 100+/-10% was obtained at an addition of 2.22 micromol/L for Al, 0.11 micromol/L for Be, 0.03 micromol/L for Co, 0.39 micromol/L for Cr, 0.14 micromol/L for Ni, and 0.12 micromol/L for Pb.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.