Abstract
A number of important citrus pathogens are spread by graft propagation, arthropod vector transmission and inadvertent import and dissemination of infected plants. For these reasons, citrus disease management and clean stock programs require pathogen detection systems which are economical and sensitive to maintain a healthy industry. To this end, multiplex quantitative real-time PCR (qPCR) assays were developed allowing high-throughput and simultaneous detection of some major invasive citrus pathogens. Automated high-throughput extraction comparing several bead-based commercial extraction kits were tested and compared with tissue print and manual extraction to obtain nucleic acids from healthy and pathogen-infected citrus trees from greenhouse in planta collections and field. Total nucleic acids were used as templates for pathogen detection. Multiplex reverse transcription-qPCR (RT-qPCR) assays were developed for simultaneous detection of six targets including a virus, two viroids, a bacterium associated with huanglongbing and a citrus RNA internal control. Specifically, two one-step TaqMan-based multiplex RT-qPCR assays were developed and tested with target templates to determine sensitivity and detection efficiency. The first assay included primers and probes for ‘Candidatus Liberibacter asiaticus’ (CLas) and Citrus tristeza virus (CTV) broad spectrum detection and genotype differentiation (VT- and T3-like genotypes). The second assay contained primers and probes for Hop stunt viroid (HSVd), Citrus exocortis viroid (CEVd) and the mitochondrial NADH dehydrogenase (nad5) mRNA as an internal citrus host control. Primers and TaqMan probes for the viroids were designed in this work; whereas those for the other pathogens were from reports of others. Based on quantitation cycle values, automated high-throughput extraction of samples proved to be as suitable as manual extraction. The multiplex RT-qPCR assays detected both RNA and DNA pathogens in the same dilution series as singleplex assays and yielded similar quantitation cycle values. Taken together, high throughput extraction and multiplex RT-qPCR assays reported in this study provided a rapid and standardized method for routine and simultaneous diagnosis of different RNA and DNA citrus pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.