Abstract

Evaporative cooling devices are used extensively in greenhouses in arid countries to reduce excessive ambient temperatures for cultivating high value crops. Accordingly, predicting outlet air temperature and humidity from the greenhouse evaporative cooler is an essential step in determining greenhouse design and operating parameters, such as the percentage of shading and air flow rate. Halasz (1998) developed a non-dimensional model capable of predicting the outlet air temperature and humidity, and outlet water temperature for evaporative coolers. This study assesses the accuracy of Halasz’s model when applied to a typical evaporative cooler used in greenhouses in Oman. A cross-fluted design of impregnated cellulose pads was used in the validation experiments. Combinations of two air flow rates and two water flow rates were studied. When model predictions were compared to measured results, it was found that the model accurately predicted the outlet air and water conditions. Within the range of operating parameters investigated, the average percentage predictive error for the outlet air and water temperatures ranged from 1.16 to 2.86% (SD ≤ 1.84%) and −4.91 to −1.30% (SD ≤ 2.29%), respectively. The average percentage predictive error for the outlet humidity ratio was between −2.21 and 0.43% (SD ≤ 4.82%).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.