Abstract

GRACE observes the temporally changing gravity field of the Earth with unprecedented accuracy. Compared to the gravity signals of the continental hydrological cycle, local ocean mass variability reflecting ocean current, density and sea level changes are a challenge for the GRACE mission. Hence, validation of GRACE with in-situ observations of ocean bottom pressure is critical to evaluate the capability of GRACE to observe oceanic mass redistribution. Here, GRACE data is compared with in-situ ocean bottom pressure at a hundred sites located in all of the world’s oceans. The advances made by recent GRACE product releases are shown, and gravity fields provided from different data centres are compared. In some regions, particularly at high-latitude sites with comparatively strong ocean bottom pressure variability and dense satellite coverage, GRACE captures oceanic variability quite well. This is a robust feature for all gravity field solutions. In contrast, some other regions show remarkably large differences between different GRACE solutions, suggesting that discrepancies in de-aliasing models play a major role in defining the skill of GRACE to realistically observe local oceanic mass variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.